6. E. A. Artyukhin and A. V. Nenarokomov, Gagarin Scientific Lectures on Cosmonautics and Aviation for 1985 [in Russian], Moscow (1986), pp. 160-161.
7. E. A. Artyukhin and S. A. Budnik, Gagarin Scientific Lectures on Cosmonautics and Aviation for 1986 [in Russian], Moscow (1987), pp. 138-139.
8. S. Patankar, Numerical Methods for Solving Heat Transfer and Fluid Dynamics Problems [Russian translation], Moscow (1984).

CONSTRUCTION OF SMOOTHING SPLINES BY LINEAR PROGRAMMING

METHODS
A. G. Pogorelov

UDC 517.536.946

The mathematical questions and algorithms for constructing n-th order smoothing splines by means of experimental (kinetic) dependences are elucidated.

1. Let the function $f(x) \in C Q[X], Q \geq n$ that takes on the approximate values $f\left(x_{1}\right)+$ $\delta_{1}, \ldots, f\left(x_{N}\right)+\delta_{N}$ be given discretely with the errors $\delta_{1}, \ldots, \delta_{N}$ at the nodes x_{1}, \ldots, x_{N} on the segment $X \subset R$. It is required to approximate the function $f(x)$ in each interval $\left[x_{i}, x_{i+1}\right), i=\overline{1, N-1}$ by a polynomial of n-th degree, $n \geq 3$:

$$
\begin{equation*}
y_{i}(x)=a_{0 i}+a_{1 i} x+a_{2 i} x^{2}+\cdots a_{n i} x^{n}, x \in\left[x_{i}, x_{i+1}\right) \tag{1}
\end{equation*}
$$

so as to satisfy the requirements [1-6]: I) fusion of the spline derivatives at the mesh nodes $S=\left\{x_{1}, \ldots, x_{N}\right\}$ up to the $(n-1)$ order

$$
\left\{\begin{array}{l}
a_{0 i}+a_{1 i} x_{i}-a_{2 i} x_{i}^{2}+\cdots+a_{n i} x_{i}^{n}=a_{0, i+1} \tag{2}\\
\cdot \\
(n-1)!a_{n, 1, i} \div n!a_{n i} x_{i}-a_{n-1, i-1}, i==\overline{1, N-2}
\end{array}\right.
$$

II) the requirement of minimal variation of the $(n-1)$-derivative of $y_{i}(x)$ (i.e., $\int_{x_{1}}^{x_{N}}\left(y^{(n-1)}\right.$ $(x))^{2} d \underset{a}{x} \operatorname{minj}$, corresponding to condition $\left|a_{v i}\right| \vec{a} \min , v=n-1, n, i=\overline{1, N-1}$, in order to avoid oscillating behavior of the graph of the spline; III) location of the spline graph within the error corridor:

$$
\left\{\begin{array}{l}
\left|\dot{f}_{\delta}\left(x_{i}\right)-a_{n i}\right| \leqslant \delta_{i}, i-\overline{1, N-1} \tag{3}\\
\left|f_{\delta}\left(x_{i}\right)-a_{0, N-1}-a_{1, N-1} x_{N}-\cdots-a_{n, N-1} x_{i}^{n}\right| \leqslant \delta_{N}
\end{array}\right.
$$

2. Conditions I and III yield the search domain for the interval values of the spline approximation coefficients by the system of constraints

$$
\left\{\begin{array}{l}
a_{0 i} \leqslant f_{\delta}\left(x_{i}\right)+\delta_{i} \tag{4}\\
-a_{0 i} \leqslant-f_{\delta}\left(x_{i}\right)+\delta_{i}, \\
a_{0 i}+a_{1 i} x_{i+1}+a_{2 i} x_{i-1}^{2}+\cdots+a_{n i} x_{i-1}^{n}-a_{0, i+1}=0 \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
(n-1)!a_{n-1, i}+n!a_{n i} x_{i-1}-a_{n-1, i+1}=0, i==\overline{1, N-2,} \\
a_{0, N-1} \leqslant f_{\delta}\left(x_{N-1}\right)+\delta_{N-1},
\end{array}\right.
$$

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 3, pp. 471-477, March, 1989. Original article submitted April 18, 1988.

$$
\left\{\begin{array}{l}
-a_{0, N-1} \leqslant-f_{\delta}\left(x_{N-1}\right)+\delta_{N-1}, \tag{4}\\
a_{0, N-1}+a_{1, N-1} x_{N}+a_{2, N-1} x_{N}^{2}+\cdots+a_{n, N-1} x_{N}^{n} \leqslant f_{\delta}\left(x_{N}\right)+\delta_{N}, \\
-\left(a_{0, N-1}+a_{1, N-1} x_{N}+a_{2, N-1} x_{N}^{2}+\cdots+a_{n, N-1} x_{N}^{n}\right) \leqslant-f_{\delta}\left(x_{N}\right)+\delta_{N} .
\end{array}\right.
$$

Since the coefficients $a_{i j}, i=\overline{0, n} ; j=\overline{1, N-1}$ can have different signs and the standard linear programning problem to which obtaining the interval estimates for $a_{i j}$ reduces has just nonnegative solutions, we set $a_{i j}=a_{i j}^{\prime}-a_{i j}^{\prime \prime}$, where $a_{i j}^{\prime}, a_{i j}^{\prime \prime} \geqslant 0$. Then condition II results in the requriement of minimum of the absolute value $\left|a_{v j}\right|=\left|a_{v i}^{\prime}-a_{v j}^{\prime \prime}\right|, v=\overline{n-1, n}$, in each interval $\left[x_{j}, x_{j+1}\right), j=\overline{1, N-1}$. Obtaining the interval estimates for $a_{i j}$ with requirements I-III taken into account can be realized by different means, for instance: A) determination of the coefficients $a_{v j}, v=n-1, n, j=\overline{1, N-1}$, initially and then all the rest; $a_{i j}, i=\overline{0, n-2}, j=\overline{1, N-1} ; B$) simultaneous determination of all coefficients by using the multiparameteric regularization method [7] for the components of the solution $a_{\nu j}, \nu=\mathrm{n}-1, \mathrm{n}, \mathrm{j}=\overline{1, \mathrm{~N}-1}$.

MODIFICATION A

In each interval $\left[x_{j}, x_{j+1}\right.$) we find minimal values of the coefficients $a_{\nu j}{ }^{0}, v=n-1$, $n, j=\overline{1, N-1}$, in absolute value, for which we solve two problems: Maximize $z_{1 v j}=a_{\nu j}$ under the constraints (4) and maximize $z_{2 v j}=-a_{v j}$ also under the constraints (4). Then taken as $a_{v j}{ }^{0}, v=n-1, n$, should be the minimal value in absolute value of $\left\{\left|z_{1 v j \max }\right|\right.$, $\left.\left|z_{2 v j \max }\right|\right\}$, i.e., $a_{v i j}^{0}=\operatorname{sign} a_{v i j}^{0}\left|a_{v j}^{0}\right|$, where $\left|a_{v j}^{0}\right|=\min \left\{\left|z_{I v j \max }\right|,\left|z_{2 v j \max }\right|\right\}, v=n-1, n$. Furthermore, we find the uniformly minimal value $a_{v j \text { min }}, \nu=n-1, n$, in absolute value in the segment $\left[\mathrm{x}_{1}, \mathrm{x}_{N}\right.$] as $\alpha_{v j_{\text {min }}}=\alpha a_{v j}^{0}$, where the proportionality factor α is determined from the solution of the problem to maximize $z_{3}=-\alpha$ under the constraints (4) but in which all the monomials $a_{v j} x_{j}{ }^{m}$ are replaced by $\alpha a_{\nu j}{ }^{0} x_{j} m, v=n-1, n, j=\overline{1, N-1}, m=\overline{0, n}$.

Afterwards we proceed to obtain interval estimates for all the other coefficients $a_{i j}$, $i=\overline{0, n-2}, j=\overline{1, N-1}$ for which ${\underset{z}{i j}}^{+}=a_{i j}, i=\overline{0, n-2}, j=\overline{1, N-1}$ must be maximized under the constraints (4) but in which all the monomials $a_{v j} x_{j}{ }^{m}, v=n-1, n$, are replaced by the quantities $z_{3_{\text {max }}} a_{\nu j}{ }^{0} x_{j}{ }^{m}$ already known and transposed, respectively, into the right sides of the constraints, and also to maximize $\bar{z}_{i j}=-a_{i j}$ under the same constraints. Then the desired interval estimates for $a_{i j}, i=\overline{0, n-2}, j=\overline{1, n-1}$ are determined as

$$
\begin{align*}
& a_{i j}=\left\{\stackrel{+}{z}_{i j_{\text {max }}} \text { for }{\stackrel{+}{z_{i j}}{ }_{j_{\max }}>0, \leqslant \bar{z}_{i j_{\max }} \text { for }}\right. \\
& \bar{z}_{i j_{\max }}<0, \geqslant \bar{z}_{i j_{\max }} \text { for } \bar{z}_{i j_{\max }}>0 \text {, } \tag{5}
\end{align*}
$$

MODIFICATION B

To find the interval estimates by the method of linear programming with the requirements I-III taken into account, we apply multiparametric regularization to obtain solutions with minimal projection norm in the solution subspace defined by the coefficients $a_{v j}, v=n-1$, n, $j=1, N-1$. Seeking the solution $a(r) \in R P$ with minimal projection norm in the subspace $\mathrm{R}^{\mathrm{r}}, \mathrm{r} \leqslant \mathrm{p}$ (norm of the vector $\left.\left(\mathbf{a}_{(r)}\right)^{T}=\left(a_{k+1}, \ldots, a_{k+r}\right), 0 \leqslant k \leqslant p, 1 \leqslant r \leqslant p-k\right)$, by the multiparametric regularization method for the linear systems $X_{\left.(N)^{p}\right)} \mathbf{a}_{(p, 1)}=\mathbf{y}_{(N \text {) }}$ or the linear programming problem. max $C a$ under the constraints $X a \leqslant y$ (the dimensionalities of X, a and y are the same) reduces by analogy with [7] to the solution, respectively, of systems $\mathbf{X W} \mathbf{W}_{(r)} \mathbf{u}=\mathbf{y}$ or $\max _{u} \mathbf{C W}_{(r)} \mathbf{u}$ under the constraints $\mathbf{X W} W_{(r)} u \leqslant y$, where $W_{(r)}$ is the matrix, $0 \leq k \leq p, 1 \leq r \leq p-k$, of form

$$
\mathbf{W}_{(r)}=\left\{\begin{array}{l:l|l}
\mathbf{E}_{(k)} & \mathbf{0}_{(k \times(\max \{N, p\}-k)} \tag{6}\\
\hline \mathbf{X}_{k+1, k+r_{(r \times N)}} & \mathbf{0}_{(r \times(p-N)+)} \\
\hline \mathbf{0}_{(p-k-r) \times(k+r)} & \mathbf{E}_{(p-k-r)} & \left.\mathbf{0}_{(p-k-r) \times(p-N)+}\right]
\end{array}\right],
$$

where $\mathrm{X}_{k+1, k+r}=\left(\begin{array}{ccc}x_{1, k+1} & \cdots x_{N, k+1} \\ x_{1, k+r} & \cdots x_{N, k+r}\end{array}\right) ;(\mathrm{p}-\mathrm{N})_{+}=\{\mathrm{p}-\mathrm{N}$ for $\mathrm{p}>\mathrm{N}$ and 0 for $\mathrm{p}<\mathrm{N}\}$; $\mathrm{E}(\cdot)$ is the unit matrix of dimensionality (.). Then the solution with the minimal projection in the solution subspace is $\mathbf{a}_{(r)}=\mathbf{W}_{(r)} \mathbf{u}$. For $k=0, r=\mathrm{n}$ the matrix is $\mathbf{W}_{(n)}=\mathbf{X}^{T}$ [7]. In matrix form the system (4) is

$$
\begin{equation*}
X a \leqslant y \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \overline{-1} \left\lvert\,=\left(\begin{array}{cccc}
0 & \cdots & & 0 \\
0 & \cdots & 0 \\
-1 & \cdots & \cdot & 0 \\
\cdot & & \\
0 & \cdots & \cdots & \\
0 & \cdots & -1
\end{array}\right)\right., j=\overline{1, N-2 .}
\end{aligned}
$$

Then the desired interval estimates of the spline coefficients are obtained from the solutions of two problems: Maximize $\stackrel{t}{z}_{i}=a_{i}$, $i=\overline{1,(n+1)(N-1)}$ under the constraints

$$
\begin{equation*}
\mathbf{X W}_{(n-1, n)} \mathbf{u} \leqslant \mathbf{y} \tag{8}
\end{equation*}
$$

where $W(n-1, n)$ is the matrix $(n+1) N \times \max \{N, p\}$, whose subnatrix $X(n-1, n)$ rows consist of columns of the matrix X, corresonding to the coefficients

$$
\begin{gathered}
a_{v j}, v=n-1, n ;\left(a_{i}, i=1,(n+1) \overline{(N-1)}\right) \equiv \mathbf{a} \equiv \mathbf{W}_{(n-1, n)} \mathbf{u} ; \\
\mathbf{y}^{T}=\left(f_{\delta}\left(x_{1}\right)+\delta_{1},-f_{\delta}\left(x_{1}\right)+\delta_{1}, 0, \ldots, 0, f_{\delta}\left(x_{N-2}\right)+\delta_{N-2},-f_{\delta}\left(x_{N-2}\right)+\right. \\
+\delta_{N-2}, 0, \ldots, 0, f_{\delta}\left(x_{N-1}\right)+\delta_{N-1},-f_{\delta}\left(x_{N-1}\right)+\delta_{N-1}, f_{\delta}\left(x_{N}\right)+\delta_{N}, \\
\left.-f_{\delta}\left(x_{N}\right)+\delta_{N}\right),
\end{gathered}
$$

and also maximize $\bar{Z}_{i}=-\alpha_{i}$ under the constraints (8). Then the desired interval estimates are determined as

$$
\begin{gather*}
a_{i}=\left\{\leqslant \dot{z}_{i_{\max }} \text { for } \dot{\bar{z}}_{i_{\max }}^{+}>0, \leqslant \bar{z}_{i_{\max }} \text { for } \bar{z}_{i_{\max }}<0, \geqslant \bar{z}_{i_{\max }}\right. \text { for } \tag{9}\\
\left.\bar{z}_{i_{\max }}>0, \geqslant+{ }_{z} i_{\max } \text { for } \dot{z}_{i_{\max }}<0\right\}, i=1,(n+1)(N-1)
\end{gather*}
$$

As in modification A the values a_{i} can here be estimated as $a_{i}=\left(a_{i_{\text {max }}}+a_{i_{\text {m }} \mathrm{n}}\right) / 2$.
3. It is required to determine the contribution of each node X_{j} with the value $f_{\delta}\left(x_{j}\right)+$ δ_{j} from the network of nodes S as well as the errors $\delta_{j}, j=\bar{l}, N$ in the values of the upper and lower bounds of the interval estimates of the coefficients $a_{i j}$ in order to construct the optimal network $S^{*} \subset\left[x_{1}, x_{N}\right]$ from the condition of minimum length of the interval estimate $\Delta a_{l}=\left|a_{l_{\max }}-a_{l_{\min }}\right|$ of the given coefficient $a_{l}, l=\overline{1,(\mathrm{n}+1)(\mathrm{N}-1)}$, i.e.,

$$
\begin{equation*}
\Delta a_{i} \rightarrow \mathrm{~s} \rightarrow \mathrm{~min} \tag{10}
\end{equation*}
$$

or from the condition of minimum sum of the lengths of the interval estimates for several or all the coefficients $\sum_{l=1}^{l+q} \Delta a_{i}, l \geqslant 1, l+q \leqslant(n+1)(N-1)$, i.e.,

$$
\begin{equation*}
\sum_{i=l}^{t-q} \Delta a_{i} \rightarrow \min \tag{11}
\end{equation*}
$$

To estimate these contributions as well as the contributions of the conditions for fusion of the derivatives (2) on the boundaries of the interval estimates for $a_{i j}$ it is required to solve problems dual to (4) and (5) (modification A) or to (8) and (9) (modification B).

Modification A. We obtain the contributions mentioned from solutions of the problem: Minimize $\bar{z}_{l}=\mathbf{y}^{T} \mathbf{B}_{l}$, where

$$
\begin{aligned}
& \mathbf{y}^{\top} \mathbf{B}_{i}=\left(f_{\delta}\left(x_{1}\right)+\delta_{1}\right) \bar{b}_{1}^{i}-\left(f_{5}\left(x_{1}\right)-\delta_{1}\right) \bar{b}_{1}^{i}-\left(a_{n-1,1} x_{2}^{n-1}+a_{n 1} x_{2}^{n}\right) b_{0!}^{i}-\left((n-1) a_{n-1,1} x_{2}^{n-2}+n a_{n 1} x_{2}^{n-1}\right) b_{11}^{\prime}+\cdots+ \\
& +\left(a_{n-1,2}-(n-1) a_{n-1,1}-n!a_{n 1} x_{2}\right) b_{n-1,1}^{!}+\cdots+\left(f_{\delta}\left(x_{N-2}\right)+\delta_{N \ldots-2}\right) \bar{b}_{N-2}^{L}-\left(f_{\delta}\left(x_{N-2}\right)-\delta_{N-2}\right) \bar{b}_{N-2}^{\prime}- \\
& -\left(a_{n-1, N-2} x_{N-1}^{n-1}+a_{n, N-2} x_{N-1}^{n}\right) b_{0, N-2}^{\prime}-\left((n-1) a_{n-1, N-2} x_{N-1}^{n-2}+n a_{n, N-2} x_{N-1}^{n-1}\right) b_{1, N-2}^{l}+\cdots+ \\
& +\left(a_{n-1, N-1}-(n-1)!a_{n-1, N-2}-n!a_{n, N-2} x_{N-1}\right) b_{n-1, N-2}^{l}+\left(f_{\delta}\left(x_{N-1}\right)+\delta_{N-1}\right)^{-1} b_{N-1}^{l}-\left(f_{\delta}\left(x_{N-1}\right)-\delta_{N-1}\right) \bar{b}_{N-1}^{l}+ \\
& +\left(f_{0}\left(x_{N}\right)+\delta_{N}-a_{n-1, N-1} x_{N}^{n-1}-a_{n, N-1} x_{i}^{n}\right) \dot{\overline{b_{N}^{i}}}=\left(f_{\delta}\left(x_{N}\right)-\delta_{N}-a_{n-1, N-i} x_{N}^{n-1}-a_{n, N-1} x_{N}^{n}\right) \bar{b}_{N}^{i},
\end{aligned}
$$

under the constraints

$$
\begin{equation*}
\left(\mathbf{X}_{(7 n-1, n)}\right)^{T} \mathbf{B}_{i} \geqslant \mathbf{e}_{l}, l=\overline{1,(n-1)}\left(N^{i}-1\right) \tag{12}
\end{equation*}
$$

 denotes the matrix X without columns corresponding to the coefficients $a_{v j}, v=n-1, n$, $j=\overline{1, N-1}$. Then the components of the vector $\hat{\mathbf{B}}_{l_{\text {min }}}: \hat{b}_{j_{\text {min }}^{\prime}}^{\prime}, \hat{\bar{b}}_{\text {min }}^{\prime}$ are contributions of the quantities $f_{\delta}\left(x_{j}\right)+\delta_{j}$ and $f_{\delta}\left(x_{j}\right)-\delta_{j}$ at the upper bound of values of the component $a \ell_{\max }$ of the coefficient vector a (the coefficients $a_{n-1,1}, a_{n 1}, \ldots, a_{n-1, N-1}, a_{n, N-1}$ are not components of) and ' $b_{i j}^{\prime}$ is the contribution of the condition for fusion of the i th derivative at the $\underset{\sim}{j}$-th node of the network S. Hence, the contribution $f_{\delta}\left(x_{j}\right)$ to $a_{\ell_{\max }}$ is determined as ($b_{j_{\min }}+$ $\left.\hat{\bar{b}}_{i_{\min }}^{l}\right) / 2$, while the values of the errors δ_{j} are as $\left(b_{j_{\min }}^{l}-\vec{b}_{i_{\min }}^{l}\right) / 2$. The contributions of these same quantities are estimated analogously at the lower bound of the component $a_{\ell_{\text {min }}}$ of the coefficients vector of the spline a : Minimize $\overline{z_{l}}=y^{T} B_{l}$ under the constraints

$$
\begin{equation*}
\left(\mathbf{X}_{(; n-1, n)}\right)^{T} \mathbf{B}_{l} \geqslant-\mathbf{e}_{l}, l=\overline{1,(n-1)(N-1)} \tag{13}
\end{equation*}
$$

Then the components of the vector of the solution $\check{\mathbf{B}}_{i_{\text {min }}}: \overline{\dot{b}}_{j_{\text {min }}}, \check{\bar{b}}_{i_{\text {min }}^{l}}, \check{b}_{i j_{\text {min }}}^{l}, \quad l=\overline{1,(n-1)(N-1)}$, $i=\overline{0, n-1}, j=\overline{1, N}$, are contributions, respectively, of $f_{\delta}\left(x_{j}\right)+\delta_{j}, f_{\delta}\left(x_{j}\right)-\delta_{j}$ and the fusion condition for the i-derivative at the j-node of the mesh S at the lower value of the component $a_{\ell_{\min }}$ of the coefficients vector of the spline a. Then the contributions of the

Modification B. We obtain estimates of the desired contributions from the solutions of the problems dual to (8) and (9): minimize $\stackrel{+}{z_{l}}=y^{T} \mathbf{B}_{l}$ under the constraints

$$
\begin{equation*}
\mathbf{W}_{(n-1, n)}^{T} \mathbf{X}^{T} \mathbf{B}_{l} \geqslant \mathbf{W}_{(n-1, n)}^{T} \mathbf{C}_{l}, \mathbf{G}_{l}=(\overbrace{0 \ldots 0}^{l} 0 \ldots 0), l=\overline{1,(n+1)(N-1)}, \tag{14}
\end{equation*}
$$

and also minimize $\bar{z}_{\ell}=\mathrm{y}^{\mathrm{T}_{\ell}}$ under the constraints

$$
\begin{equation*}
\mathbf{W}_{(n-1, n)}^{T} \mathbf{X}^{T} \mathbf{B}_{l} \geqslant-\mathbf{W}_{(n-1, n)}^{T} \mathbf{C}_{l}, l=\overline{1,(n+1)_{i}(N-1)} \tag{15}
\end{equation*}
$$

Let $\hat{\mathbf{B}}_{\ell_{\min }}$ and $\check{\mathrm{B}}_{\ell_{\min }}$ denote the solutions of the problems (14) and (15). Then the desired contributions of the nodes of the network S, the errors δ_{j}, and the conditions for fusion of the derivatives at the boundaries of the interval estimates for the spline coefficients, including the coefficients $a_{n-1, j}, j=\overline{1, N-1}$ in this case, are determined by the components of the vectors $\hat{\mathbf{B}}_{\ell_{\text {min }}}$ and $\check{\mathbf{B}}_{\ell_{\text {min }}}$.

In conclusion, we note that the algorithms considered are general in nature and can be applied for the construction of splines of different orders and defects on the basis of other basis functions; questions of the existence and uniqueness of the appropriate splines do not here enter within the framework of this report.

NOTATION

δ_{i}, error of giving a function at the i-node; x_{i}, coordinate of the argument at the i node; $X=\left[x_{1}, X_{N}\right]$, segment on which the function is given discretely; R, a one-dimensional axis; $f(x) \in C^{Q}[X]$, a Q times differentiable function in the segment $X ; f\left(x_{i}\right)+\delta_{i}, f_{\delta}\left(x_{i}\right)$, values of the function in the i-node aggravated by errors; n, order of the polynomial spline; $y_{i}(x)$, running value of the approximating polynomial between two nodes; $a_{i j}, i=\overline{0, n}, j=$ $1, N-1, a_{v j}$, coefficients of the approximating polynomial between two nodes; S, node network; $a_{i j}^{\prime}, a_{i j}^{\prime \prime}$, terms of the difference representation of the spline coefficients; $a_{V j}{ }^{0}$, minimal value, in absolute value, of the coefficients $a_{v j} ; z_{1 v j}, z_{2 v j}, \dot{z}_{i j}, \bar{z}_{i j}, z_{3_{\text {max }}}, \dot{z}_{i}, \bar{z}_{i}, \dot{z}_{l}, \bar{z}_{l}$ are target functions of the appropriate linear programming problems; α, constant factor; $a v j m i n$, uniformily minimal, in absolute value, values of the coefficients $a v j$ in the coefficients $X ; R P, R^{r}$, Euclidean spaces of dimensionality p and r; x, matrix of the left side of the system of linear algebraic equations; a, vector of the desired unknowns of the system of linear equations; y, vector of the free terms (the right sides) of the system of linear equation; w(r), matrix of the mapping of the space of solutions of the system of linear equations into control space in the multiparametric regularization procedure; u, vector of the control (regularization) parameters; $\hat{B}_{l}=\left\{\hat{\mathrm{B}_{l}}, \overrightarrow{\mathrm{~B}_{l}}\right\}$, vector of contributions of the quantities $\mathrm{f}_{\delta}\left(\mathrm{x}_{\mathrm{i}}\right)+\delta_{\mathrm{i}}, \mathrm{f}_{\delta}\left(\mathrm{x}_{\mathrm{i}}\right)-$ δ_{i} and fusion conditions for derivatives in the interval estimates (their upper and lower bounds) of the smoothing spline coefficients.

LITERATURE CITED

1. C. H. Reinsch, Numer. Math., 10, 177-183 (1967).
2. R. Varga, Functional Analysis and Theory of Approximation in Numerical Analysis [Russian translation], Moscow (1974).
3. S. V. Stechkin and Yu. N. Subbotin, Splines in Computational Mathematics [in Russian], Moscow (1976).
4. V. A. Morozov, Zh. Vychisl. Mat. Mat. Fiz., 11, No. 3, 545-558 (1971).
5. A. I. Grebennikov, Method of Splines and Solution of Incorrect Problems of the Theory of Approximations [in Russian], Moscow (1983).
6. V. A. Vasilenko, Spline-Functions: Theory, Algorithms, Programs [in Russian], Novosibirsk (1983).
7. A. V. Chechkin, Dokl. Akad. Nauk SSSR, 252, No. 4, 807-810 (1980).
